Innovations and Opportunities in Therapeutic Vaccines: Technology Platforms, Key Players, and Early Pipeline Candidates

This report explores over 70 new proprietary technologies, licensing deals, and intellectual property positions.

Scope

- Challenges and benefits of therapeutic vaccination.
- Review of over 70 proprietary technologies for designing, producing, and administering vaccines.
- Profiles of companies developing new therapeutic vaccines.
- More than 270 specific vaccine candidates in development at 120 companies and research organizations.
- Expert opinions on opportunities, challenges and future trends in the therapeutic vaccine field.

Research and analysis highlights

New technical capabilities and better understanding of the human immune system has recently allowed vaccination approaches to be applied to therapeutic settings as well as prophylaxis. Demand for therapeutic vaccines is high, and profits from launched drugs are expected to achieve 'blockbuster' levels (billions of US dollars per annum). Treatment of established diseases requires different immune reactions to protective (prophylactic) immunity, to overcome existing disease burdens and immuno-avoidance mechanisms, so immune responses must be 'modulated' rather than just stimulated. Vaccine approaches can also be used to inhibit immune responses to specific 'antigens', making them useful for treating allergies, autoimmune diseases and transplant rejection. Various vectors and adjuvants, each with their own benefits and drawbacks, are being used to enhance the delivery of vaccine antigens to target immune cells.

Key reasons to purchase this research

- Understand the basic qualities of vaccines and how these qualities translate into unique medical and commercial features for therapeutic candidates.
- Appreciate the challenges and risks of therapeutic vaccines, as well as their promise.
- Assess emerging technologies for possible investment or in-licensing.
- Identify which companies are involved in this field, and what they are doing.
- Tailor your own company's strategies to take advantage of upcoming opportunities, such as the validation of new technologies in human patients.
Table of Contents

Executive summary
- An introduction to therapeutic vaccines
 - Vaccines comprising unlinked polypeptide antigens
 - Peptide antigens linked to polypeptide carrier/adjuvant molecules
 - Delivery of peptide antigens using particulate carriers
 - DNA vaccines
 - Recombinant viruses as vaccines
 - Cell-based vaccines

Chapter 1 An introduction to therapeutic vaccines
- Summary
- Introduction
- Vaccination
- Therapeutic vaccination
- Specificity
- Potency
- Convenience and cost
- Challenges for therapeutic vaccines
- Disease burden
- Immunosuppression
- Immuno-avoidance
- Examples of therapeutic vaccines already approved for sale/manufacture
 - Rabies vaccines
 - Allergy vaccines
 - Alutard SQ
 - Grazax
 - Chanllergen
 - Multiple sclerosis immunotherapy
 - BCG vaccines as immunotherapies for cancers
 - TheraCys
 - OncoTICE
 - PACIS
 - Vaccines containing cancer antigens
 - Melacine
 - MVax
 - CreaVax-RCC
 - Oncophage
 - Provenge
 - OncoVAX
 - Conclusions

Chapter 2 Vaccines comprising unlinked polypeptide antigens
- Summary
- Introduction
- Technology platforms
Polyvalent Vaccines
Tolerogenic vaccines
Apitopes
ToleroMune
Tregitopes
Complementary peptides
Bionor Immuno peptide design
TUMAPs
magnICON
ImmuNovo platforms
PepTcell epitope prediction
Variosite
Optimized cryptic peptides
iAPA
Early pipeline vaccine candidates
ALK-Abelló
Apitope
Axon Neuroscience
Bayer Innovation
BioArctic Neuroscience
Bionor Immuno
BioSidus
CIGB
Circassia
CSL
CuraVac
EpiVax
Genovax
Green Peptide
GSK
Helicure
iBio
Immatics
ImmunoCellular Therapeutics
Immunotope
Immunovaccine
ImmunoVentis
ImmuNovo
Intercell
Juvaris
MabVax
Multimmune
OncoTherapy Science
Paladin Labs
PepTcell
Pfizer
Chapter 3 Peptide antigens linked to polypeptide carrier/adjuvant molecules

Summary
Introduction
Technology platforms
Haptenization
Mimotopes
AFFiTOME
ADX40
ImmunoBodies
APC targeting mAb-vaccines
Vaccibodies
ApoVax
Ii Key Hybrid
LEAPS
HSP technology
ASIT+
CyaA
ImmuCcine
Kinoid vaccines
UBITh
Early pipeline vaccine candidates
AFFiRiS
Antigen Express
Antigenics
ApoImmune
Araclón Biotech
Aster Biopharmaceuticals
BioTech Tools
Braasch Biotech
Cancer Research UK
CEL-SCI
Celldex
Genticel
GSK
Chapter 4 Delivery of peptide antigens using particulate carriers

Summary
Introduction
Technology platforms
SupraAntigen
ImuXen
Lipotek platforms
Virosomes
Virus-like particles
CVLPs
HCV VLPs
Schiller and Chackerian
Auto-antibody drugs
Immunodrugs
WHcAg VLPs
PREPs
Versamune
CHP Technology
DCtag
pMHC-NP
Cellarium
Early pipeline vaccine candidates
AC Immune
C-Pharma
Cytos
Dendright
Henderson Morely
Immunofrontier
InCytu
Lentigen
Lipotek
Lipoxen
Oncothyreon
Panvax
Parvus Therapeutics
Chapter 5 DNA vaccines

Introduction
Technology platforms
Ii suppression
BHT-DNA
ANTIGENEering
Peptide-Derivatized Dendrimers
IL-12M
TriGrid
LAMP-vax
SynCon
ProfectusVAX
ImuXen
Early pipeline vaccine candidates
Antigen Express
Bayhill Therapeutics
CIGB
Genetic Immunity
Genexine
Genovax
GeoVax
Ichor
ImmunoFrontier
ImmunoGenetix
Immunomic Therapeutics
Inovio
Karolinska Institute
Lipoxen
Merck & Co
Profectus
Scancell
University of Miami
University of Southampton
Vaccibody AS
Vical
ViroMed
Conclusions

Chapter 6 Recombinant viruses as vaccines

Summary
Introduction
Technology platforms
Alphavaccine
MVA-BN
Chimpanzee adenovirus vectors
Theravax
Co-X-Gene
ProfectusVAX
IBDV
Early pipeline vaccine candidates
AlphaVax
BN ImmunoTherapeutics
Crucell
Genexine
GenPhar
GeoVax
Okairos
Profectus
PSMA Development Co
Transgene SA
TSD Japan
Vaxin Inc
VectorLogics
Virax
Conclusions
Safety concerns
Immunogenicity

Chapter 7 Cell-based vaccines
Summary
Introduction
Technology platforms
Advaxis’ Listeria platform
Aduro BioTech’s Listeria platforms
Æterna Zentaris bacterial carrier system
Tarmogens
Autologous dendritic cells
iAPA
DCVax
HS System
HyperAcute Immunotherapies
TGF-ß antisense technology
ImmuneFx
OPALs
Early pipeline vaccine candidates
Aduro BioTech
Advaxis
Æterna Zentaris
Appendix
Primary research methodology
Glossary
Index
References

List of Figures
Figure 2.1: Antigen presentation by MHC class I
Figure 2.2: Antigen presentation by MHC class II
Figure 2.3: ARM treatment of autoimmune disease
Figure 3.4: Immunobody activation of T-helper cells
Figure 3.5: An example of a Vaccibody
Figure 3.6: An Ii Key Hybrid
Figure 7.7: Tarmogen vaccination

List of Tables
Table 2.1: Therapeutic vaccine candidates containing unlinked polypeptide antigens
Table 2.2: Therapeutic vaccine candidates containing unlinked polypeptide antigens (ctd 1)
Table 2.3: Therapeutic vaccine candidates containing unlinked polypeptide antigens (ctd 2)
Table 2.4: Therapeutic vaccine candidates containing unlinked polypeptide antigens (ctd 3)
Table 2.5: Therapeutic vaccine candidates containing unlinked polypeptide antigens (ctd 4)
Table 2.6: Therapeutic vaccine candidates containing unlinked polypeptide antigens (ctd 5)
Table 3.7: Therapeutic vaccine candidates containing peptide antigens linked to polypeptide carriers/adjuvant molecules
Table 3.8: Therapeutic vaccine candidates containing peptide antigens linked to polypeptide carriers/adjuvant molecules (ctd 1)
Table 3.9: Therapeutic vaccine candidates containing peptide antigens linked to polypeptide carriers/adjuvant molecules (ctd 2)
Table 4.10: Therapeutic vaccine candidates using simple particulate carriers
Table 4.11: Therapeutic vaccine candidates using simple particulate carriers (ctd)
Table 5.12: Therapeutic DNA vaccine candidates
Table 5.13: Therapeutic DNA vaccine candidates (ctd 1)
Table 5.14: Therapeutic DNA vaccine candidates (ctd 2)
Table 6.15: Therapeutic vaccine candidates comprising recombinant viruses
Table 6.16: Therapeutic vaccine candidates comprising recombinant viruses (ctd)
Table 7.17: Therapeutic cell-based vaccine candidates
Table 7.18: Therapeutic cell-based vaccine candidates (ctd 1)
Table 7.19: Therapeutic cell-based vaccine candidates (ctd 2)
Table 7.20: Therapeutic cell-based vaccine candidates (ctd 3)