Advances in Imaging Biomarkers: Innovative Technologies, Applications in R&D and Clinical Practice, Informatics and Regulatory Requirements

This report discusses advances in key technologies, the use of imaging biomarkers in drug discovery, as well as development and current use in clinical practice. It also outlines key collaborative initiatives in standardizing imaging technologies and informatics, as well as improving quantification and qualification without which the vision will not be realized.

Scope

• Highlights key technologies for imaging biomarker development in various research and clinical settings, as well as pivotal technology developments.
• Analyzes imaging biomarkers currently used in clinical practice as well as the future of imaging biomarkers.
• Provides case studies of individual imaging biomarkers and the companies/research collaborations responsible for their development.
• Discusses key collaborative initiatives aiming to introduce standards and improve quantification of imaging biomarkers.
• Analyzes potential for cost savings from the use of imaging biomarkers.

Research and analysis highlights

Imaging biomarkers are attractive & are now widely used in drug discovery development & in clinical care. Imaging biomarkers provide non-invasive approaches that are translatable from the laboratory to the clinic & allow researchers & clinicians to see in great detail how drugs are behaving in vivo.
Small animal imaging is a rapidly growing area in the preclinical development of new pharmaceuticals. Instrumentation to allow CT, PET, SPECT, MRI, ultrasound or optical imaging of small animals is available from a large number of suppliers & the largest pharma companies are actively developing their capabilities in this area.
The use of imaging biomarkers in clinical medicine has the potential to change the standard of care in many disease states for example by providing the ability to find tumors more easily & to stratify them according to the most appropriate therapy type. Molecular imaging can also identify other lesions, such as amyloid deposits

Key reasons to purchase this research

• Identify key technologies for development of imaging biomarkers to assist in biomarker discovery & development
• Identify relevance of imaging biomarkers to drug discovery & development
• Learn about the important efforts of public-private consortia that are working to develop new imaging biomarkers, qualify existing imaging biomarkers
• Understand potential for imaging biomarkers to improve diagnostic processes, enabling earlier disease identification & promoting preventive medicine
• Discover the potential of imaging biomarkers for improving decision making, terminating unsuitable drug projects & reducing costs in clinical care
Table of Contents

Advances in Imaging Biomarkers
Executive summary 10
Introduction 10
Imaging biomarkers: discovery, development & supporting technologies 11
R&D applications of imaging biomarkers 12
Clinical applications of imaging biomarkers 13
Informatics supporting the clinical application of imaging biomarkers 14
Imaging centers 15
Validation, qualification and regulation of imaging biomarkers 16
The future of the imaging biomarker market 17
Chapter 1 Introduction 20
Summary 20
Introduction 21
Overview of imaging modalities 21
Imaging biomarkers in research and clinical practice 26
Prognostic imaging biomarkers 28
Imaging biomarkers of response 28
Imaging biomarkers of efficacy and dosing 29
Imaging biomarkers of safety 30
Therapeutic areas 30
Importance of imaging biomarkers 30
Report outline 32
Chapter 2 Imaging biomarkers: discovery, development & supporting technologies 34
Summary 34
Discovering and developing new imaging biomarkers 35
Advances in imaging technologies and molecular probes 37
Molecular imaging probes 38
NIH-sponsored projects driving molecular imaging 39
Accessibility of molecular imaging probes for PET imaging 40
Combined imaging modalities 42
Technical advances in the field of MRI 43
High field MRI 43
Functional MRI 43
Magnetic resonance spectroscopy 44
Diffusion weighted MRI 45
Targeted probes for MRI 46
Improving MRI resolution with hyperpolarization 46
Spectral CT 50
Advances in optical imaging 51
Photoacoustic imaging 51
Conclusions 52
Chapter 3 R&D applications of imaging biomarkers 54
Summary 54
Introduction 55
Imaging biomarkers in drug discovery 56
Imaging biomarkers in preclinical development 57
Figure 1.1: Imaging techniques and their uses 22
Figure 1.2: Imaging biomarkers in drug development and clinical care 27
Figure 1.3: Types of biomarker and their uses in drug development and disease management 28
Figure 1.4: The potential of imaging biomarkers 31
Figure 2.5: Examples of imaging biomarkers in oncology 35
Figure 2.6: Steps in biomarker development 36
Figure 2.7: Functional magnetic resonance imaging of the brain 44
Figure 2.8: Diffusion MRI - CNS 46
Figure 2.9: Images of the lungs with conventional MRI and hyperpolarized gas MRI 48
Figure 2.10: Schematic of Spectral CT technology 50
Figure 3.11: Pharma industry productivity decline, 2000-2009 55
Figure 3.12: Uses of imaging in preclinical drug development 59
Figure 3.13: Areas of interest for the Society for Nuclear Medicine’s Clinical Trials Network 70
Figure 3.14: The 'learn and confirm' model of drug discovery and development 74
Figure 4.15: Imaging modalities for biomarker detection in oncology, neurology and cardiology 80
Figure 4.16: Chemical structure of 18F-ML-10 (Aposense) 89
Figure 4.17: Structures of PET ligands for Alzheimer’s disease diagnosis 100
Figure 4.18: Structures of norepinephrine and AdreView 106
Figure 4.19: Results of the primary endpoint in the ADMIRE-HF study of AdreView (GE Healthcare) 108
Figure 4.20: Kereos’ targeted nanoparticles 109
Figure 4.21: PET images obtained during the Phase I study of CardioPET (FluoroPharma) 112
Figure 6.22: Impact analysis of the CMS 2010 Physician Fee Schedule Final Rule Summary on global imaging payments 131
Figure 6.23: CT, MRI and radio-isotope procedures carried out in the UK annually 132
Figure 6.24: Locations of static PET scanners in the UK 133
Figure 6.25: Commercial delivery of 18FDG in the British Isles 134
Figure 7.26: Evolution of biomarkers: towards clinical utility 142
Figure 7.27: Imaging biomarker qualification 146
Figure 7.28: ‘Fit-for-purpose’ qualification of biomarkers 147
Figure 7.29: Pilot biomarker qualification process 149
Figure 8.30: Key stakeholders in the development and use of imaging biomarkers 157
Figure 8.31: Key factors in the shift towards preventive and predictive medicine 165
Figure 8.32: Costs related to imaging equipment 168
Figure 8.33: Imaging biomarkers: lower cost and less invasive than biopsy 168
Figure 8.34: Drivers and resistors for the imaging biomarker market 171
Figure 8.35: Drivers for growth in healthcare markets in emerging economies 173
Figure 8.36: Government healthcare stimulus plans in emerging economies 173

List of Tables
Table 1.1: Common PET positron-emitting tracer isotopes 23
Table 1.2: Common SPECT radionuclides 24
Table 1.3: Advantages and disadvantages of different imaging modalities 26
Table 2.4: Desirable characteristics of molecular imaging probes 39
Table 2.5: Academic laboratories researching hyperpolarization in MRI 49
Table 3.6: Advantages of molecular imaging of whole animals for preclinical studies 58
Table 3.7: Partners of the Biomarker Consortium 72
Table 3.8: Imaging biomarker projects being carried out by the Biomarkers Consortium 73
Table 4.9: Examples of commercial developmental molecular imaging biomarkers in oncology (preclinical) 85
Table 4.10: Examples of commercial developmental molecular imaging biomarkers in oncology (Phase II, II and III) 86
Table 4.11: Examples of imaging biomarker clinical trials of the Cancer Imaging Program 94
Table 4.12: Examples of molecular imaging biomarkers for the diagnosis and management of Alzheimer’s disease 99
Table 4.13: Examples of molecular imaging biomarkers for the diagnosis and management of Parkinson’s disease 103
Table 4.14: Examples of commercial developmental molecular imaging biomarkers for cardiovascular disease diagnosis 105
Table 5.15: Companies developing computer aided diagnostic software 119
Table 6.16: Predicted growth rates for outpatient MRI and CT in the US, 2008–2013 128
Table 6.17: The 20 largest academic imaging centers in the US 129
Table 6.18: Examples of companies supplying PET radiopharmaceuticals 136
Table 7.19: FDA fee rates ($) for the 2010 financial year 151
Table 8.20: Examples of the different types of industry clinical trials involving PET 159
Table 8.21: Examples of the different types of industry clinical trials involving MRI 161
Table 8.22: Effect of HER2 testing on the development of Herceptin 162
Table 8.23: Radiation doses from various types of medical imaging procedures 166